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Refraction of finiteamplitude water waves : deep-water 
waves approaching circular caustics 
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The ‘numerically exact ’ properties of plane periodic deep-water waves am used in 
slowly-varying-wave approximation for a steady axisymmetric wave field. The linear 
‘ray ’ theory for such a wave field corresponds to waves approaching a circular caustic. 
A parameter, C, characterizes each solution. If C is smaller than 20 the wave behaviour 
is dominated by the convergence of wave energy and waves are expected to break. 
Comparison with experiment for C = 0 indicates that breaking may be accurately 
predicted. If C is greater than 50 then the waves propagate closer to the caustic and, 
since it is of Peregrine & Smith’s (1979) type R, it is likely that the waves do not break. 
These solutions show that wave action does not flow along the straight lines of the 
linear rays. 

1. Introduction 
‘ Numerically exact ’ solutions for properties of plane periodic water waves (Longuet- 

Higgins 1975; Cokelet 1977) make it possible to investigate the refraction of finite- 
amplitude water waves. It is still necessary to make the relatively severe approxi- 
mation that on the scale of individual waves the wave field has all the properties of a 
plane periodic train of waves. 

The refraction of deep-water waves by two simple current distributions is dealt with 
by Peregrine & Thomas (1979) which is referred to hereafter as I. The behaviour of the 
solution near two types of caustic is investigated there. More general analysis, but 
limited to near-linear waves, in Peregrine & Smith (1979) shows that near-linear 
caustics come in two varieties which they label R and S, corresponding to ‘regular’ 
and ‘singular’. It seems, but is not proved, that the breaking of water waves due to 
the proximity of a caustic is only likely for S type caustics. As noted by Peregrine 
t Smith all water wave caustics on still water we of the R type. 

Study of the refraction of finite-amplitude water waves in finite depth of water has 
followed. Stiassnie t Peregrine (1979) derive relevant averaged equations following 
Phillips (1966), Whitham (1974) and Crapper (1979). The effects of depth variation 
for the case of parallel depth contours and a single incident plane wave are treated for 
normally incident waves by Stiassnie & Peregrine (1980) and for obliquely incident 
waves by Ryrie & Peregrine (1981). This later p a p r  includes the case of depth-induced 
caustics which are very similar to the R type caustics of I despite the fact that extra 
‘potential ’ variables, viz. the depth and current, not considered by Peregrine & Smith 
(1979) are involved. 
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The present study of waves approaching a circular caustic uses the same approach aa 
I. It is clear from Peregrine & Smith (1 979) that a circular caustic is of R type for water 
waves, at  least insofar as near-linear theory is applicable. However, unlike the R type 
caustics of I and Ryrie & Peregrine (1981), the convergence of wave energy can lead to 
wave breaking before the vicinity of the caustic is reached. This is particularly so in 
the limit where the radius of the circle tends to zero and waves approach the centre with 
crests in the form of contracting circles. For this particular case comparison with 
experiment is possible. A sector of the circle corresponds to waves propagating into a 
converging wedge-shaped channel. Such waves have been measured by van Dorn & 
Pazan (1975) and the measurements show that the finite-amplitude results are an 
improvement over linear theory. The experimental results include observations on 
the breaking of waves. The finite-amplitude theory, together with Longuet-Higgins’s 
(1978) result for rapid instability of waves greater than a critical steepness, appear to 
give a good guide to the onset of breaking. 

There is a simple discussion of the corresponding linear theory in order to provide a 
framework for discussion of the later results and since some of the analysis is identical 
for the finite-amplitude waves. After the mathematical theory is briefly presented two 
special cases are discussed: (i) an exact focus, that is the example with circular crests 
mentioned above, and (ii) radial waves, that is with crests like the spokes of a wheel. 
These are limiting cases, C = 0 and C = 00, for a dimensionless caustic parameter 
which characterizes the whole family of solutions. Infinitesimal waves also correspond 
to C = 00 and there are two branches of the solution for all sufficiently large C. Typical 
examples for intermediate values of C are presented. 

These examples show that the wave energy does not always propagate in straight 
lines despite the fact that the medium is homogeneous and isotropic. This is not entirely 
surprising in view of past work on nonlinear wave propagation. For deep-water waves 
the propagation velocities of small modulations are the group velocity, twice, for 
linear waves, but are complex for finite-amplitude waves (see Hayes 1973; Whitham 
1974; or I). This divergence from straight lines corresponds to the self-focusing (or 
de-focusing) discussed in Whitham (1974, $16.3) for a different geometry. 

2. Linear theory 

be written 

where k = as/$, z is vertically upwards, and r, like other vectors in this paper, is a 
two-dimensional horizontal vector. The function #(r)  satisfies Helmholtz’s equation 

For infinitesimal waves of frequency cr on deep water the velocity potential can 

#(r) e-kz-id, (2.1) 

V2# + k2# = 0, (2.2) 

for which exact solutions in polar co-ordinates, (r, e), are the Bessel function solution 

J,( kr) cine, 

Hg) (b) e”0. 
and the Hankel function solution 

The Bessel function solution (2.3) is regular everywhere and corresponds to waves 
meeting a circular caustic in the neighbourhood of r = n/k and then proceeding to 
propagate away from it. The number of waves around the caustic is n. The Hankel 
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(a ) (b 1 
FIGORE 1. (as) The rays of the Bessel function solution (2.3). 

(b )  The rays of the Hankel function solution (2.4). 

function solution (2.4) corresponds only to waves coming towards the caustic and 
within the caustic circle its modulus increases towards a singularity at  the origin. This 
latter solution (or the HF) function for waves receding from a caustic) is the exact 
linear solution corresponding to the nonlinear solutions which follow. 

A more intuitive version of these two solutions is given by their ‘ray’ descriptions 
which are portrayed in figure 1. This description amounts to treating the waves as if 
they are locally plane waves. It is helpful to do this fist for the linear case where 
comparison can be made with the exact solutions. 

Consider one ray, as in figure 2. If the angle between the ray and a radial line to the 
origin is a then the wavenumber may be written as 

k = -kcosaF+ksina& (2.6) 

aedX, (2.6) 

where k = VX. (2.7) 

where P and 6 are unit vectors in the co-ordinate directions. The wave field is assumed 
to be described by an expression 

On a large scale a and a are assumed to vary with position. For a steady axisymmetric 
wave field this means they are functions of r alone. However, for (2.7) to be a consistent 
expression we must have 

everywhere and this reduces to 
V x k = O  

a -(rk.6) = 0, 
ar 

since k is independent of 8.  Integration gives 

rksina = n, (2.9) 

where the constant of integration has been put equal to n by comparison with the 
exact solution (e.g. when a = in). From (2.9) we immediately have 

k cos a = (ka - n2/r2)*, (2.10) 
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FIGURE 2. Defmhion diagram for a ray. 

and can then integrate equation (2.7) to give 

within a constant. 
can be developed in a different way by considering phase 

directly. Suppose phase is referred to a reference point at Q ,  see figure 2. On the caustic 
circle at r = n/k, which has n waves around it, the phase at T is (0 + 477 -a) n. The 
distance TP is (r2 - n2/k2)1 so the difference in phase between T and P is - (k2r2 - n2)t. 
Adding these together and noting cos (4r-a)  = n/kr gives the expression (2.11) 
again for the phase at  P. This time the integration constant is defined by the reference 
to Q. 

The wave amplitude comes from the conservation of wave action. For this steady 
problem, this gives 

where B is the wave-action flux, or by the radial symmetry 

= - (k2r2 - n2)i + n c0s-l (nlkr) + ne (2.11) 

The expression for 

(2.12) V.B = 0,  

1 8  - -(rB.F) = 0.  
r ar 

(2.13) 

Now, the wave-action flux is in the k direction, so, with IBI = B,  equation (2.13) 

rB cos a = constant. (2.14) 
integrates to 

For linear waves the wave-action flux is *pg$/k; thus 

a = a, (r cos a)-& = a, (r2 - n2/k2)-t, (2.15) 

where a, is a constant. This result is also readily derived from figure 2 by noting that 
‘adjacent’ rays meet at the caustic and B is therefore inversely proportional to  the 
length TP. 

The results (2.11) and (2.15) substituted in (2.6) indicate that an approximation to 
H$)(kr) is 

al(r2 - n2/k2)-t exp i[ - (k2r2 - n2)1 + n cos-1 (n/kr)],  (2.16) 

or al(r cos a)--$ exp i[ - kr cos a + n(&r - a)]. (2.17) 

This is indeed an asymptotic expansion of Hi? for large n; the corresponding results for 
J, and Y, are given in Abra,mowitz & Stegun (1964), $9.3.3, with B = &r-a. 
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-0.3 1 
FIGURE 3. A comparison of J,,(z), full line, with its 

asymptotic expansions, broken line. 

A comparison between J,,(z) and the asymptotic expansion corresponding to (2.16) 
with the appropriate constant multiplier is given in figure 3. The asymptotic expansion 
for z < 10, which needs little modification of (2.16), is also given. As so often happens, 
the approximation is remarkably good. 

3. Finite-amplitude theory 

but varies with wave steepness. The dispersion equation may be written 
For finite-amplitude waves the wavenumber is not constant for a given frequency 

g2 = gkS(s), (3.1) 

where s = a2k2 is the steepness squared. The notation follows I. 
The kinematic relationships involving k are no different from those of linear theory 

so that equations (2.9) and (2.10) still hold. However, direct integration to a phase 
function as in (2.11) is not possible since k is not constant, but an unknown function 
of r. 

Wave-action flux is conserved and again the derivation for linear theory holds up 
to equation (2.14). However, B is a more complicated function. Using equation (2.13) 
of I we write (2.14) in the form 

@g/2k3) ( E  + 5L) r cos a = pgb, (3.2) 

where b is a constant and E(s)  and L(s) are dimensionless measures of the energy 
density and averaged Lagrangian , defined in I. 

Once cr, n and b are given, the unknown functions of r are k, a and s. If a value of s 
is chosen equation (3.1) gives k; then equations (2.9) and (3.2) can be solved for r and 
a. That is, r ,  k and a are given as functions of s by 

k = a2/gS, (3.3) 

(3.4) 
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It can be seen from equation (3.4) that an appropriate dimensionless radius is 

R = d+/ng (3.6) 

and similarly K = gk/c+ (3.7) 

for the wavenumber. At a linear caustic R = 1 and K = 1. The above solutions depend 
on the single dimensionless constant 

C = g%/@b, (3.8) 

C = q3rc/a6b, (3.9) 

C for ‘ caustic parameter ’. An alternative expression is 

where rc is the radius of the linear caustic. First we consider the cases C = 0 and C = co. 

4. The perfect focus 

(3.2) can be written as 

which is a single equation between r and s. ‘It is shown, with slightly different variables, 
in figure 4. 

One realization of this configuration is obtained when waves propagate on deep 
water between converging walls. This gives a sector from the complete circular waves 
the solution can describe. However, it is also a realistic experimental configuration 
which has been used by van Dorn & Pazan (1975) who give tables of measurements of 
waves in a channel with a 1 : 10 convergence. In particular, they give measurements of 
wave steepness, H I L  = ak/n ,  and channel width, 20, for different wave frequencies 
and different amplitudes of wavemaker displacement. 

The main aim of van Dorn & Pazan’s work was to study wave breaking so that only 
some of their measurements are suitable for comparison with equation (4.1). Data for 
one wave train has been considered usable if there are a minimum of six measurements 
of the wave train before its amplitude is reduced by breaking. Six sets of data satisfy 
this criterion and all are included here. Points which are identified as breaking waves, 
or as waves that have broken are included only if their steepness is greater than the 
steepness at  the previous measuring point. 

In  order that a data set can be compared with (4.1), or the equivalent linear-theory 
equation, it is necessary to use some of the data to determine the constant b. In  an 
initial plot of the data the first measurement was used; however, on consideration it 
seems more appropriate to use the average value from bhe whole data set. Thus for 

For the case of waves travelling directly towards the origin n = 0,  a = 0 and equation 

S3 ( E  + 5L)r = 2a6b/g3, (4.1) 

every point the quantity 
b1 = S3 ( E  + 5L) W, 

which is proportional to b in equation (4.1), and 

b, = ia2k2ta, (4.3) 

which is the corresponding linear-theory quant,ity, were calculated. Cokelet’s (1 977) 
tables were used. The mean values of b, and b,  are given in table 1. Of course, when all 
the points are plotted, as they are in figure 4, this does mean that the theoretical line 
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FIGURE 4. A comparison of theory and van Dorn & Pazan's (1975) experimental results. Meaaure- 
ments of breaking waves are indicated by surrounding the point by a broken circle. The experi- 
mental points are not being compared with linear theory. The solution for linear theory is 
included for comparison with the finite-amplitude theory only, please see the text. For 0.66 Hz: 
0 , A ;  + , B ;  0, C.For0.73Hz: A ,  A ;  V, B. x ,  0.80Hz, A .  

passes through the centroid of each data set; but there is no intrinsic reason for using 
any other method of choosing b, and b,. 

To gain a measure of whether the finite-amplitude theory is any better than linear 
theory one must consider the differences from the theoretical curve. The standard 
deviation is a measure of dispersion about the mean. The values of the standard 
deviation of the ' constants' b, and b, have been calculated for each data set; call them 
uo and u,. The values of 6, and 6, differ so much from each other that the quantities 
u0/6, and ul/6 should give a better measure of the relative agreement.? These are 
given in table 1. Examination of the numbers in that table shows that in every case 
the points have less dispersion for the finite-amplitude theory. For one of the largest 
data sets, 0.66 Hz experiment B, the spread is more than halved. This data set includes 
the steepest wave measured. It should be noted in considering figure 4 that if the points 
had been plotted using linear theory they would have clustered about that theoretical 
line. 

In figure 4 breaking waves are indicated by broken circles. In the same region of the 
figure there is an arrow at the steepness ak = 0.41 or H / L  = 0.13. This is the critical 
steepness at, which Longuet-Higgins ( 1978) finds that deep-water waves become 
unstable to a rapidly growing instability. Numerical experiments (Longuet-Higgins 
& Cokelet 1978) show that the instability leads to wave breaking. There is remarkably 

t A straight comparison of no and u1 gives no advantage to the linear theory except for 
experiment U at 0.66 Hz, which is, however, the sot with the largcst range of high-steepneae 
waves. Which of u,/6, or vTi is the better for comparison depends on the error structure of the 
measurements. A brief error analysis indicates that foi* steep waves the i'omer gives H. fairer 
(.omparirison. 
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Frequency 
(a) Expt. 

0.66 A 
B 
C 

0.73 A 
B 

0.80 A 

Measured 
points 60 6, co/60 d 6 ,  

10 3.82 4.88 0.068 0-050 
10 7.45 11.54 0-084 0-041 
6 11.49 18.84 0.110 0.074 

9 3-80 4.45 0.101 0-094 
8 9-61 15.81 0.140 0.118 

8 3.75 4.89 0.076 0-067 

TAB= 1 

good agreement between this criterion and the few relevant experimental points. If 
all of van Dorn & Pazan’s (1975) data points are examined, it is seen that the steepest 
wave they measure has ak = 0.43. The relevance of this type of solution to wave 
breaking is discussed at greater length in Stiassnie & Peregrine (1980); however, for 
finite depth of water analysis corresponding to Longuet-Higgins’s (1 978) result is 
not available. 

5. Radial solutions 

u = ?pr, hence b = 0 and 

These are waves such that the phase speed c = v/k = urln is proportional to distance 
from the origin. All that this requires is that the wave steepness increases appro- 
priately with r .  That is, according to 

There is another simple special solution, which has waves with radial crests. That is, 

rk = n. (6.1) 

r = gnS/az, or R = S .  (5.2) 

A plot of steepness, ak, against R is given in figure 6. The solution only exists for 

1.0 < R < 1.194. 

The only comparable linear solution is for waves in a circular cylinder where an 
edge-wave, or whispering-gallery, mode exists. It is found by setting the first maximum 
of J, (b)  at the cylinder’s boundary; this determines k (see figure 3, the cylinder 
boundary is at  kr = 11-8 for n = 10). For large n this maximum is at 

R N 1 + 0.80%-8 + O(n-t), (5.3) 

which is always less than 1.194 for n > 8. 

6. The general case 
The behaviour of solutions for the full range of values of C, 0 < C < 00, can be better 

understood by noting the limiting values. In $ 4  the case C = 0 is dealt with. As can 
be seen from the solution and experiments there is a radius at which waves break. For 
small values of C similar behaviour can be expected. Perhaps this is most easily seen 
from ray diagrams scaled such that the radius of breaking is constant aa in figure 5. 
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FIQURE 5. Linear-ray diagrams for C = 0 and for C mall, 
drawn with a constant radius of w&ve breaking. 

Convergence of wave action dominates the wave behaviour and the caustic is too 
remote to be relevant. From equation (3.4) it can be seen that this behaviour certainly 
occurs when 

That is when C < 2/[S4(E+ SL)],, 21 10. (6.2) 
For large values of C there is a non-uniformity. For the case of Q 5,  C = 00 and we have 

the radially oriented waves. On the other hand, as C --+ 00 for fixed u and n the wave- 
action flux approaches zero and the linear solution of $ 2  is appropriate. As can be seen 
below, this non-uniformity is reflected in the solutions for large C, which for a finite 
range of r are not unique but have two branches corresponding to the two solutions 
just mentioned. 

It is quite straightforward to calculate solutions for any value of C using the approxi- 
mate expressions for S(s), E(s)  and L(s)  given by I ,  or directly from the tables of 
Longuet-Higgine (1975) or Cokelet (1977). The dimensionless versions of equations 
(3.3), (3.4) and (3.5) may be written: 

K = 1/S, (6.3) 

tana  = iCS*(E+5L) (6.4) 

and R = S cosec a. (6.5) 
Figure 6 shows some sample solutions for the steepness, ak, as a function of R. The 

curve for C = 20 is qualitatively little different from that for C = 0 given in figure 4. 
The next solution, for C = 50, is different. It has a vertical tangent at a steepness below 
the ' breaking steepness' and hence a singularity in the approximate solution which 
may not indicate breaking. There is a second solution branch at higher steepnesses for 
a very limited range of R. Higher values of C show the 'caustic singularity' moving to 
a more gentle steepness and the second solution becoming more pronounced. 

The two solutions for C = co, waves of zero steepness and waves with radial crests, 
are indicated. These limit the solutions for large C. On the other hand, the linear ray- 
theory solution can be applied for non-zero amplitude. It is 

K = 1, sina = R-1, B = aak2 = 4/CRcosa, 
( 6 4 ,  (6.7), (6.8) 
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FIQIJRE 6. Steepness as a function of R for waves approaching a circular caustic. "he numbers 
indicate the value of the caustic parameter, C, on each curve. Full lines are finite-amplitude 
solutions, broken lines are linear ray-theory solutions. 

FIQURE 7. The angle, a, between the wavenumber vector and the radius vector as a function of 
R for waves approaching a circnlar caustic. The numbers indicate the value of the caustic 
parameter, C, on each curve. 

in our dimensionless variables. Three examples are indicated in figure 6 by broken 
lines. The finite-amplitude solution for C = 1000 is so close to the linear solution until 
its singularity that one can expect the linear theory, especially the exact solution, to 
be superior for such large values of C. 

The direction of wave propagation for finite-amplitude waves deviates from that of 
linear waves, aa is clear &om comparison of equations (6.5) and (6.7). This deviation 
may be seen in the solutions for a(R) given in figure 7. The variation of 01 for linear 
waves corresponds to  straight-line propagation and is the lower solution for C = 00 

in the figure. The two solutions for C = 00 can again be seen to limit the two branches 
of the solution for large values of C. The direction of deviation from a straight line for 
the finite-amplitude waves is away from the region of steeper waves. 
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7. Conclusions 
The study of the refraction of finite-amplitude water waves is carried further in two 

important respects. The comparison with experiment shown in figure 4 and table 1 
indicates that this approach can be more accurate than linear theory and that, in 
conjunction with Longuet-Higgins’s (1978) theoretical result, it is successful in 
predicting the occurrence of wave breaking. Secondly, as foreshadowed by the general 
results for the ‘modulation velocities’ of nonlinear waves, the solutions presented in 
$ 5  demonstrate quite explicitly that propagation along ‘rays) derived from linear 
theory is inadequate for nonlinear waves. If lines everywhere parallel with the wave- 
number vector are considered, these are curved in these examples even though the 
medium is uniform. 

It is rarely that refraction of water waves propagating on deep still water is of any 
importance, but when it is C can be estimated from (3.9) and linear theory. For finite 
water depths, Stiassnie & Peregrine (1980) compare solutions for waves normally 
incident on a beach with experiments. The comparison is less convincing than figure 4 
since waves in finite depth of water suffer more dissipation and there are more likely to 
be other disturbing effects due to mean flows. The behaviour of finite-depth, finite- 
amplitude waves near a caustic is likely to be similar to that of deep-water waves. 
Ryrie & Peregrine (1981) show that no new features arise at a straight caustic caused 
directly by variation of the depth. Further work is needed to confirm the expectation 
that circular caustics in constant water depth are similar to those described here. 

All the finite-amplitude solutions omit interaction with reflected waves. This is 
satisfactory for the case of a perfect focus ($3) and other cases where the caustic 
parameter Cis less than about 20 since the theory predicts that waves break. In which 
case they may be expected to dissipate much of their energy in the process. For the 
larger values of C, especially C > 50, the solutions suggest that waves do not break and 
presumably are reflected. Near-linear theory can deal with these cases, see Peregrine 
& Smith (1979)) and work is in progress to examine this further. However, at present 
there seems to be no prospect of dealing with this aspect for truly finite-amplitude 
waves. 

The work described in $ 3  was presented at the European Mechanics Colloquium, 102, 
‘Breaking waves; surf and run up on beaches’ at the University of Bristol, 18-21 July 
1978. 
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